

		Due	,pts
Na	me		Hour
	$\mathbf{p} = \mathbf{m}\mathbf{v}$	explosions:	$\mathbf{m_1} \ \mathbf{v_1} = \mathbf{m_2} \ \mathbf{v_2}$
	$\mathbf{I} = \mathbf{F} \Delta \mathbf{t} = \mathbf{m} \Delta \mathbf{v}$	elastic collisions:	$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$
		inelastic collisions:	$m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f$
	Conceptual Questions:		
1.	a. What is unit for momentum (<i>what it's measured in</i>)?b. What is the variable (<i>letter</i>) we use for momentum?		
	c. If you divide momentum by velocity, what variable will you end up with?		
	d. The reason air bags are used is because they increase the which decreases the force felt. e. If you double the force needed to stop an object and m Δv remains constant, what happens to Δt ? f. If you divide momentum by mass, what unit do you end up with? g. If you triple the velocity and mass remains constant, what happens to the momentum?		
	h. What are the 2 units of Impulse that a	are equal to each other?	and

2. What is the momentum of a Rudolph (mass 42 kg) running down a hill at 5 m/s? (ans. 210 kgm/s)

- 3. A snowball with a mass of 50 grams is fired with a velocity of 12m/s from a snowball cannon with mass of 11 kg. What would be the recoil velocity of the snowball cannon? (ans. 0.05m/s, Hint: Use the explosion equation and don't forget to put the mass in kg.)
- 4. What impulse would need to be applied to Papa Smurf in order to stop him from sliding across the ice if he has a mass of 8 kg and an initial speed 12 m/s? (ans. -96 kgm/s)
- **5.** A skater with a mass of 50 kg glides at 7 m/s and collides with a stationary skater (mass 75 kg). If the two skaters hold onto each other, with what velocity will they move after colliding? (*ans.* 2.8 m/s)

6. An 8-kg bowling ball traveling at 2 m/s strikes a stationary 2.5-kg pin which moves off in the same straight line at 6 m/s. What is the speed of the bowling ball after the collision? (ans. 0.125 m/s)

7. Small rockets are used to make small adjustments in the speed of Santa's sleigh. One such rocket has a thrust of 535 N. If it is fired to change the velocity of the 900 kg sleigh from 5 m/s to 16 m/s, how long should it be fired? (ans. 18.5 sec.)

8. Elf throws a snowball of mass 0.20 kg is and is hit back at him by a bully with a change in velocity of 10 m/s. If the snowball and the hand of the bully were in contact for 0.025 seconds, what force was exerted by the bully on the snowball? (ans. 80 N)

9. A 92 kg man drops from rest from a diving board that is 5.2 m above the water and comes to rest 1.25 sec after reaching the water.

a. Solve for the velocity he hits the water with using both:(10.1 m/s) a 1-D motion equation: Conservation of energy:

b. Solve for the force it takes to stop him once he hits the water using both: (743 N) Newton's 2^{nd} Law: $F \Delta t = m \Delta v$

10. A train of teddy bears, traveling at 56 **mph** and weighing 108,182 kg collides with a stationary car full of angry bird stuffed animals that weighs 6,095 **lbs**. (*Make sure to convert*!)

a. Calculate the momentum of the train before the collision. (ans. about 2.71 x 10^6 kgm/s)

b. Calculate the speed of the train with the car after the collision assuming the train and the car move in a straight line and stick together after the collision. (*ans. about 24.37 m/s*)

11. A 0.2 kg ball is thrown straight up into the air with an initial speed of 35 m/s. Find the momentum of the ball when it is **halfway to its maximum height**. (Find Δy first, then cut in $\frac{1}{2}$ to find new v at that height) (4.95 kgm/s)